Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(8): 1975-1988, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38353589

RESUMO

Flexible tactile sensors have become important as essential tools for facilitating human and object interactions. However, the materials utilized for the electrodes of capacitive tactile sensors often cannot simultaneously exhibit high conductivity, low modulus, and strong adhesiveness. This limitation restricts their application on flexible interfaces and results in device failure due to mechanical mismatch. Herein, we report an ultra-low modulus, highly conductive, and adhesive elastomer and utilize it to fabricate a microstructure-coupled multifunctional flexible tactile sensor. We prepare a supramolecular conductive composite film (SCCF) as the electrode of the tactile sensor using a supramolecular deep eutectic solvent, polyvinyl alcohol (PVA) solution, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and MXene suspension. We employ a polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) film containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) as the dielectric layer to fabricate capacitive sensors with an electrical double layer structure. Furthermore, we enhance the performance of the device by incorporating coupled pyramid and dome microstructures, which endow the sensor with multi-directional force detection. Our SCCF exhibits extremely high conductivity (reaching 710 S cm-1), ultra-low modulus (0.8 MPa), and excellent interface adhesion strength (>120 J m-2). Additionally, due to the outstanding conductivity and unique structure of the SCCF, it possesses remarkable electromagnetic shielding ability (>50 dB). Moreover, our device demonstrates a high sensitivity of up to 1756 kPa-1 and a wide working range reaching 400 kPa, combining these attributes with the requirements of an ultra-soft human-machine interface to ensure optimal contact between the sensor and interface materials. This innovative and flexible tactile sensor holds great promise and potential for addressing various and complex demands of human-machine interaction.

2.
J Colloid Interface Sci ; 660: 608-616, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266342

RESUMO

The skin is the largest organ in the human body and serves vital functions such as sensation, thermal management, and protection. While electronic skin (E-skin) has made significant progress in sensory functions, achieving adaptive thermal management akin to human skin has remained a challenge. Drawing inspiration from squid skin, we have developed a hybrid electronic-photonic skin (hEP-skin) using an elastomer semi-embedded with aligned silver nanowires through interfacial self-assembly. With mechanically adjustable optical properties, the hEP-skin demonstrates adaptive thermal management abilities, warming in the range of +3.5°C for heat preservation and cooling in the range of -4.2°C for passive cooling. Furthermore, it exhibits an ultra-stable high electrical conductivity of âˆ¼4.5×104 S/cm, even under stretching, bending or torsional deformations over 10,000 cycles. As a proof of demonstration, the hEP-skin successfully integrates stretchable light-emitting electronic skin with adaptive thermal management photonic skin.


Assuntos
Nanofios , Dispositivos Eletrônicos Vestíveis , Humanos , Prata , Pele , Condutividade Elétrica
3.
Autophagy ; 20(1): 58-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584546

RESUMO

ABBREVIATIONS: ACTB: actin beta; AREG: amphiregulin; ATP6V0A4: ATPase, H+ transporting, lysosomal V0 subunit A4; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CLDN1: claudin 1; CTSB: cathepsin B; DEGs: differentially expressed genes; E2: 17ß-estradiol; ESR: estrogen receptor; GATA2: GATA binding protein 2; GLA: galactosidase, alpha; GO: gene ontology; HBEGF: heparin-binding EGF-like growth factor; IGF1R: insulin-like growth factor 1 receptor; Ihh: Indian hedgehog; ISH: in situ hybridization; LAMP1: lysosomal-associated membrane protein 1; LCM: laser capture microdissection; Le: lumenal epithelium; LGMN: legumain; LIF: leukemia inhibitory factor; LIFR: LIF receptor alpha; MSX1: msh homeobox 1; MUC1: mucin 1, transmembrane; P4: progesterone; PBS: phosphate-buffered saline; PCA: principal component analysis; PPT1: palmitoyl-protein thioesterase 1; PGR: progesterone receptor; PSP: pseudopregnancy; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; qPCR: quantitative real-time polymerase chain reaction; SP: pregnancy; TFEB: transcription factor EB.


Assuntos
Proteínas Hedgehog , Proteostase , Gravidez , Feminino , Humanos , Proteínas Hedgehog/metabolismo , Autofagia , Útero/metabolismo , Epitélio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Blastocisto/metabolismo , Lisossomos/metabolismo
4.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513374

RESUMO

As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.

5.
Nat Commun ; 14(1): 3220, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270588

RESUMO

Progesterone (P4) is required for the preparation of the endometrium for a successful pregnancy. P4 resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P4-progesterone receptor (PGR) signaling networks in the mouse uterus. Cfp1f/f;Pgr-Cre (Cfp1d/d) mice showed impaired P4 responses, leading to complete failure of embryo implantation. mRNA and chromatin immunoprecipitation sequencing analyses showed that CFP1 regulates uterine mRNA profiles not only in H3K4me3-dependent but also in H3K4me3-independent manners. CFP1 directly regulates important P4 response genes, including Gata2, Sox17, and Ihh, which activate smoothened signaling pathway in the uterus. In a mouse model of endometriosis, Cfp1d/d ectopic lesions showed P4 resistance, which was rescued by a smoothened agonist. In human endometriosis, CFP1 was significantly downregulated, and expression levels between CFP1 and these P4 targets are positively related regardless of PGR levels. In brief, our study provides that CFP1 intervenes in the P4-epigenome-transcriptome networks for uterine receptivity for embryo implantation and the pathogenesis of endometriosis.


Assuntos
Endometriose , Progesterona , Transativadores , Animais , Feminino , Humanos , Camundongos , Gravidez , Implantação do Embrião/genética , Endometriose/genética , Endometriose/metabolismo , Endométrio/metabolismo , Epigênese Genética , Progesterona/farmacologia , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , RNA Mensageiro/metabolismo , Útero/metabolismo , Transativadores/genética
6.
Biol Reprod ; 108(3): 479-491, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36477298

RESUMO

Ovarian follicle is the basic functional unit of female reproduction, and is composed of oocyte and surrounding granulosa cells. In mammals, folliculogenesis strictly rely on gonadotropin regulations to determine the ovulation and the quality of eggs. However, the dynamic changes of protein-expressing profiles in follicles at different developmental stages remain largely unknown. By performing mass-spectrometry-based quantitative proteomic analysis of mouse follicles, we provide a proteomic database (~3000 proteins) that covers three key stages of gonadotropin-dependent folliculogenesis. By combining bioinformatics analysis with in situ expression validation, we showed that our proteomic data well reflected physiological changes during folliculogenesis, which provided potential to predict unknown regulators of folliculogenesis. Additionally, by using the oocyte structural protein zona pellucida protein 2 as the internal control, we showed the possibility of our database to predict the expression dynamics of oocyte-expressing proteins during folliculogenesis. Taken together, we provide a high-coverage proteomic database to study protein-expression dynamics during gonadotropin-dependent folliculogenesis in mammals.


Assuntos
Folículo Ovariano , Proteômica , Camundongos , Animais , Feminino , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Células da Granulosa/metabolismo , Mamíferos
7.
Front Cell Dev Biol ; 10: 1010601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407101

RESUMO

Ovarian follicles are the fundamental structure to support oocyte development, which provides mature oocytes for offspring. This process requires granulosa cells (GCs) to respond to the midcycle surge of hormones, leading to GC proliferation and differentiation by a series of genes' transcriptional expression changes. Epigenetic mediator, Polycomb Repressive Complex 1 (PRC1) has been reported to function in fetal ovarian development. However, its functional relevance to folliculogenesis and ovulation remains unknown. In this study, we demonstrated that GC-selective depletion of PCGF2, a key component of PRC1, led to the loss of follicles, ovulation defects, and a lengthened estrus cycle, resulting in subfertility in female mice. The expression of PCGF2 is in the GCs of growing follicles and increases after human chorionic gonadotropin (hCG) stimulation. PCGF2 bound to the promoter of the key ovulation gene progesterone receptor (Pgr) and upregulated the expression of Pgr by targeting the epigenetic modification of H2AK119ub1 after hCG surge. Consistently, the expression of downstream genes of Pgr also sharply decreased, which resulted in the follicular rupture failed and oocyte entrapped in corpus luteum in GC-specific Pcgf2 knockout mice. Together, our study identified that PCGF2 is essential for folliculogenesis and ovulation via modulating hormone receptor expression.

8.
BMC Biol ; 20(1): 109, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35550124

RESUMO

BACKGROUND: Ovarian follicles, which are the basic units of female reproduction, are composed of oocytes and surrounding somatic (pre) granulosa cells (GCs). A recent study revealed that signaling in somatic preGCs controlled the activation (initial recruitment) of follicles in the adult ovaries, but it is also known that there are two waves of follicle with age-related heterogeneity in their developmental dynamics in mammals. Although this heterogeneity was proposed to be crucial for female reproduction, our understanding of how it arises and its significance is still elusive. RESULTS: In the current study, by deleting the key secreted factor KIT ligand from preGCs and analyzing the follicle cell developmental dynamics, we revealed distinct patterns of activation and growth associated with the two waves of follicles in mouse ovary. Our results confirmed that activation of adult wave follicles is initiated by somatic preGCs and dependent on the KIT ligand. By contrast, activation of first wave follicles, which are awakened from germ cells before follicle formation, can occur in the absence of preGC-secreted KIT ligand in postnatal ovaries and appears to be oocyte-initiated. We also found that the asynchronous activity of phosphatidylinositol 3 kinases (PI3K) signaling and meiotic process in embryonic germ cells lead to the follicle heterogeneity in postnatal ovaries. In addition, we supplied evidence that the time sequence of embryonic germ cell development and its related first wave follicle growth are correlated to the time of puberty onset in females. CONCLUSION: Taken together, our study provides evidence that asynchronous development of embryonic oocytes leads to the heterogeneity of postnatal ovarian follicle activation and development, and affects the timing of onset of puberty in females.


Assuntos
Células Germinativas Embrionárias , Fosfatidilinositol 3-Quinases , Animais , Feminino , Mamíferos , Camundongos , Oócitos/fisiologia , Oogênese , Folículo Ovariano , Maturidade Sexual , Fator de Células-Tronco
9.
Anal Bioanal Chem ; 414(17): 5009-5022, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641641

RESUMO

In this study, a fluorescent reagent, 4-((aminooxy)methyl)-7-hydroxycoumarin (AOHC), was for the first time applied to label the low-molecular-mass aldehydes (LMMAs) through reductive oxyamination reaction to afford single N,O-substituted oxyamine derivatives at room temperatures with derivatization efficiencies as high as 96.8%. In the following high-performance liquid chromatography with fluorescence detection analysis, 12 LMMAs, including furfurals, aromatic aldehydes, and aliphatic aldehydes, were baseline-separated on an ODS column and detected with low limits of detection (LODs) (0.2-50 nM), and good precisions (intraday relative standard deviations [RSDs] were 2.40-4.68%, and interday RSDs were 4.65-8.91%). This approach was then adopted to analyze six alcoholic beverages and five dairy products, and nine LMMAs with concentrations in the 0.28-798.16 µM range were successfully detected with excellent accuracies (recoveries were 92.2-106.2%). Finally, the results were statistically analyzed and discussed. The proposed method has several advantages, including high sensitivity, room-temperature labeling, and the avoidance of further extraction and/or enrichment procedures, demonstrating its great utility for monitoring LMMAs in various complex matrices.


Assuntos
Aldeídos , Bebidas , Aldeídos/análise , Bebidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Hidroxilamina , Hidroxilaminas/análise , Indicadores e Reagentes
10.
J Mol Cell Biol ; 13(9): 646-661, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097060

RESUMO

Embryo implantation in both humans and rodents is initiated by the attachment of a blastocyst to the uterine epithelium. For blastocyst attachment, the uterine epithelium needs to transform at both the structural and molecular levels first, and then initiate the interaction with trophectoderm. Any perturbation during this process will result in implantation failure or long-term adverse pregnancy outcomes. Endocrine steroid hormones, which function through nuclear receptors, combine with the local molecules produced by the uteri or embryo to facilitate implantation. The insulin-like growth factor (IGF) signaling has been reported to play a vital role during pregnancy. However, its physiological function during implantation remains elusive. This study revealed that mice with conditional deletion of Igf1r gene in uteri suffered from subfertility, mainly due to the disturbed uterine receptivity and abnormal embryo implantation. Mechanistically, we uncovered that in response to the nidatory estrogen on D4 of pregnancy, the epithelial IGF1R, stimulated by the stromal cell-produced IGF1, facilitated epithelial STAT3 activation to modulate the epithelial depolarity. Furthermore, embryonic derived IGF2 could activate both the epithelial ERK1/2 and STAT3 signaling through IGF1R, which was critical for the transcription of Cox2 and normal attachment reaction. In brief, our data revealed that epithelial IGF1R was sequentially activated by the uterine stromal IGF1 and embryonic IGF2 to guarantee normal epithelium differentiation during the implantation process.


Assuntos
Implantação do Embrião , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/metabolismo , Animais , Blastocisto/citologia , Blastocisto/fisiologia , Diferenciação Celular , Células Epiteliais/metabolismo , Estrogênios/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Receptor IGF Tipo 1/genética , Fator de Transcrição STAT3/metabolismo , Células Estromais/metabolismo , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...